Android12(S)图形显示系统-初识ANativeWindow/Surface/SurfaceControl(七)

博客 动态
0 179
羽尘
羽尘 2022-03-17 11:56:49
悬赏:0 积分 收藏

Android 12(S) 图形显示系统 - 初识ANativeWindow/Surface/SurfaceControl(七)

Surface/SurfaceControl/ANativeWindow/ANativeWindowBuffer,这些类有什么作用?它们之间有什么关系?

题外话

"行百里者半九十",是说步行一百里路,走过九十里,只能算是走了一半。因为步行越接近目的地,走起来越困难。借指凡事到了接近成功,往往是最吃力、最艰难的时段。劝人做事贵在坚持,有始容易,有终实难。

不多说了,希望自己能坚持写完这个系列 ......


1 前言

在前几篇文章中,你应该已经看到文中有冒出来比较多的陌生的类,比如 Surface/SurfaceControl/ANativeWindow/ANativeWindowBuffer,这些类有什么作用?它们之间有什么关系?以及它们和BufferQueue之间的关系是怎样的?我们带着这些问题,来开始这篇文章的讲解

? ANativeWindow

? Surface

? SurfaceControl

? ANativeWindowBuffer

2 几个常用类介绍

ANativeWindow


ANativeWindow 顾名思义,这个结构体是对一个本地窗口的抽象描述。老规矩先看代码:

其定义位于:/frameworks/native/libs/nativewindow/include/system/window.h

struct ANativeWindow{    // C++ 代码下会定义构造函数,并初始化common成员中的部分信息#ifdef __cplusplus    ANativeWindow()        : flags(0), minSwapInterval(0), maxSwapInterval(0), xdpi(0), ydpi(0)    {        common.magic = ANDROID_NATIVE_WINDOW_MAGIC;        common.version = sizeof(ANativeWindow);        memset(common.reserved, 0, sizeof(common.reserved));    }    /* Implement the methods that sp<ANativeWindow> expects so that it       can be used to automatically refcount ANativeWindow's. */    void incStrong(const void* /*id*/) const {        common.incRef(const_cast<android_native_base_t*>(&common));    }    void decStrong(const void* /*id*/) const {        common.decRef(const_cast<android_native_base_t*>(&common));    }#endif    // 结构体第一个成员,相当于继承自android_native_base_t,其主要用于引用计数,还有版本信息    struct android_native_base_t common;    /* flags describing some attributes of this surface or its updater */    const uint32_t flags;    /* min swap interval supported by this updated */    const int   minSwapInterval;    /* max swap interval supported by this updated */    const int   maxSwapInterval;    /* horizontal and vertical resolution in DPI */    const float xdpi;    const float ydpi;    /* Some storage reserved for the OEM's driver. */    intptr_t    oem[4];    /* 设置swap间隔,跟踪源码可发现其最终调用了mGraphicBufferProducer->setAsyncMode,       也就是设置Producer是同步or异步模式 */    int     (*setSwapInterval)(struct ANativeWindow* window,                int interval);    /* 请求(出队列)一块buffer。执行后这块buffer就不是locked锁定状态,因此内容不能被修改。       如果没有可用的buffer,这个方法会被阻塞。       该方法已被弃用。*/    int     (*dequeueBuffer_DEPRECATED)(struct ANativeWindow* window,                struct ANativeWindowBuffer** buffer);    /* 锁住buffer。在修改buffer中的内容前一定要先调用lock方法。       这块buffer首先是dequeueBuffer请求到的。       该方法已被弃用。*/     */    int     (*lockBuffer_DEPRECATED)(struct ANativeWindow* window,                struct ANativeWindowBuffer* buffer);    /* 当修改完buffer内容,调用这个方法,把buffer返回到队列中,用于后续显示输出。       该方法已被弃用。*/    int     (*queueBuffer_DEPRECATED)(struct ANativeWindow* window,                struct ANativeWindowBuffer* buffer);    /* 检索查询有关 native window 的信息        what指明要查询信息的类型,比如 NATIVE_WINDOW_WIDTH 、NATIVE_WINDOW_HEIGHT 查询宽高*/    int     (*query)(const struct ANativeWindow* window,                int what, int* value);    /* 对surface执行各种操作,比如 NATIVE_WINDOW_SET_USAGE or NATIVE_WINDOW_CONNECT       一般不会直接调用这个方法,而是使用辅助方法,比如 native_window_set_usage */    int     (*perform)(struct ANativeWindow* window,                int operation, ... );    /* 取消已出队列的buffer。这个方法已被弃用 */    int     (*cancelBuffer_DEPRECATED)(struct ANativeWindow* window,                struct ANativeWindowBuffer* buffer);    /* 请求(出队列)一块buffer。如果没有可用的buffer,这个方法会被阻塞。       fenceFd是一个fence文件描述符,可以简单理解为一个资源同步锁       当发出fence信号后才可以写buffer */    int     (*dequeueBuffer)(struct ANativeWindow* window,                struct ANativeWindowBuffer** buffer, int* fenceFd);    /* 入队列一块buffer */    int     (*queueBuffer)(struct ANativeWindow* window,                struct ANativeWindowBuffer* buffer, int fenceFd);    /* 取消一块已经dequeue的buffer */    int     (*cancelBuffer)(struct ANativeWindow* window,                struct ANativeWindowBuffer* buffer, int fenceFd);};

在/frameworks/native/libs/nativewindow/include/system/window.h这个头文件中,还定义很多enum常量,这些常量的作用这源码中都有详细的英文注释,建议直接阅读理解。

用于query()函数检索信息的常量

/* attributes queriable with query() */enum {    NATIVE_WINDOW_WIDTH = 0,    NATIVE_WINDOW_HEIGHT = 1,    NATIVE_WINDOW_FORMAT = 2,    NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS = ANATIVEWINDOW_QUERY_MIN_UNDEQUEUED_BUFFERS,    NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER = 4,    NATIVE_WINDOW_CONCRETE_TYPE = 5,    NATIVE_WINDOW_DEFAULT_WIDTH = ANATIVEWINDOW_QUERY_DEFAULT_WIDTH,    NATIVE_WINDOW_DEFAULT_HEIGHT = ANATIVEWINDOW_QUERY_DEFAULT_HEIGHT,    NATIVE_WINDOW_TRANSFORM_HINT = ANATIVEWINDOW_QUERY_TRANSFORM_HINT,    NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND = 9,    NATIVE_WINDOW_CONSUMER_USAGE_BITS = 10, /* deprecated */    NATIVE_WINDOW_STICKY_TRANSFORM = 11,    NATIVE_WINDOW_DEFAULT_DATASPACE = 12,    NATIVE_WINDOW_BUFFER_AGE = ANATIVEWINDOW_QUERY_BUFFER_AGE,    NATIVE_WINDOW_LAST_DEQUEUE_DURATION = 14,    NATIVE_WINDOW_LAST_QUEUE_DURATION = 15,    NATIVE_WINDOW_LAYER_COUNT = 16,    NATIVE_WINDOW_IS_VALID = 17,    NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT = 18,    NATIVE_WINDOW_CONSUMER_IS_PROTECTED = 19,    NATIVE_WINDOW_DATASPACE = 20,    NATIVE_WINDOW_MAX_BUFFER_COUNT = 21,};

用于(*perform)()的标识各种操作的常量

deprecated标记的可能已被弃用或被其他功能函数取代

标记为“私有”的值应被视为框架私有。可以访问ANativeWindow的HAL实现代码不应该使用这些,因为它可能无法与框架对ANativeWindow的使用进行正确的交互。

/* Valid operations for the (*perform)() hook. */enum {    // clang-format off    NATIVE_WINDOW_SET_USAGE                       =  ANATIVEWINDOW_PERFORM_SET_USAGE,   /* deprecated */    NATIVE_WINDOW_CONNECT                         =  1,   /* deprecated */    NATIVE_WINDOW_DISCONNECT                      =  2,   /* deprecated */    NATIVE_WINDOW_SET_CROP                        =  3,   /* private */    // 完整内容,请参考源码    }

用于NATIVE_WINDOW_[API_][DIS]CONNECT的参数

两个函数native_window_api_connect  和  native_window_api_disconnect

/* parameter for NATIVE_WINDOW_[API_][DIS]CONNECT */enum {    NATIVE_WINDOW_API_EGL = 1, // 使用OpenGL ES填充buffer后,EGL通过eglSwapBuffers入队列这个buffer    NATIVE_WINDOW_API_CPU = 2, // 使用CPU填充buffer后,入队列buffer    NATIVE_WINDOW_API_MEDIA = 3, // video解码器填充buffer后,Stagefright入队列这个buffer    NATIVE_WINDOW_API_CAMERA = 4,// 友camera HAL 入队列buffer};

用于NATIVE_WINDOW_SET_BUFFERS_TRANSFORM 图像转换的参数

/* parameter for NATIVE_WINDOW_SET_BUFFERS_TRANSFORM */enum {    NATIVE_WINDOW_TRANSFORM_FLIP_H = HAL_TRANSFORM_FLIP_H ,// 水平翻转    NATIVE_WINDOW_TRANSFORM_FLIP_V = HAL_TRANSFORM_FLIP_V, // 垂直翻转    NATIVE_WINDOW_TRANSFORM_ROT_90 = HAL_TRANSFORM_ROT_90, // 将源图像按时钟方向旋转90度    NATIVE_WINDOW_TRANSFORM_ROT_180 = HAL_TRANSFORM_ROT_180,// 将源图像按时钟方向旋转180度    NATIVE_WINDOW_TRANSFORM_ROT_270 = HAL_TRANSFORM_ROT_270, // 将源图像按时钟方向旋转270度    NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY = 0x08 // 通过对其显示的屏幕进行逆变换来转换源。};

上述参数即用于如下这个函数,buffer显示时就会按照我们设置的转换类型进行翻转、旋转。

/* * native_window_set_buffers_transform(..., int transform) * All buffers queued after this call will be displayed transformed according * to the transform parameter specified. */static inline int native_window_set_buffers_transform(        struct ANativeWindow* window,        int transform){    return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_TRANSFORM,            transform);}

用于NATIVE_WINDOW_SET_SCALING_MODE设置缩放模式的常量

/* parameter for NATIVE_WINDOW_SET_SCALING_MODE */enum {    /* the window content is not updated (frozen) until a buffer of     * the window size is received (enqueued)     */    NATIVE_WINDOW_SCALING_MODE_FREEZE           = 0,    /* the buffer is scaled in both dimensions to match the window size */    NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW  = 1,    /* the buffer is scaled uniformly such that the smaller dimension     * of the buffer matches the window size (cropping in the process)     */    NATIVE_WINDOW_SCALING_MODE_SCALE_CROP       = 2,    /* the window is clipped to the size of the buffer's crop rectangle; pixels     * outside the crop rectangle are treated as if they are completely     * transparent.     */    NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP    = 3,};

上述参数即用于如下这个函数

/* * native_window_set_scaling_mode(..., int mode) * All buffers queued after this call will be associated with the scaling mode * specified. */static inline int native_window_set_scaling_mode(        struct ANativeWindow* window,        int mode){    return window->perform(window, NATIVE_WINDOW_SET_SCALING_MODE,            mode);}

 

Surface


Surface和ANativeWindow存在千丝万缕的联系,Surface继承了ANativeWindow,并对其中的功能做了具体实现。

ANativeWindow这个结构体中定义了大量的函数指针,这些函数指针指向了哪里?或函数功能在哪里?答案就在Surface中。

 

Surface的定义位于:/frameworks/native/libs/gui/include/gui/Surface.h

先看看它的声明:

class Surface    : public ANativeObjectBase<ANativeWindow, Surface, RefBase>{    ......}

ANativeObjectBase是一个模板类,作为辅助类将ANativeXXXX的对象类型转换为C++的引用计数类型

template <typename NATIVE_TYPE, typename TYPE, typename REF,        typename NATIVE_BASE = android_native_base_t>class ANativeObjectBase : public NATIVE_TYPE, public REF{

我们结合上面这两段代码来看,是不是很清晰了:

在Surface的定义中,NATIVE_TYPE==ANativeWindow , REF==RefBas ==> ANativeObjectBase 继承了ANativeWindow

根据继承的逻辑关系,很明显Surface继承了ANativeWindow

 

Surface中定义了很多函数接口,不过也有些规律。

? hook_*的函数

hook函数有10个,这些函数和ANativeWindow中定义的函数指针对应,hook钩连一块

他们是怎么样钩连起来的呢?可以看/frameworks/native/libs/gui/Surface.cpp 中构造函数

Surface::Surface(const sp<IGraphicBufferProducer>& bufferProducer, bool controlledByApp,                 const sp<IBinder>& surfaceControlHandle)      : .... {    // Initialize the ANativeWindow function pointers.    ANativeWindow::setSwapInterval  = hook_setSwapInterval;    ANativeWindow::dequeueBuffer    = hook_dequeueBuffer;    ANativeWindow::cancelBuffer     = hook_cancelBuffer;    ANativeWindow::queueBuffer      = hook_queueBuffer;    ANativeWindow::query            = hook_query;    ANativeWindow::perform          = hook_perform;    ANativeWindow::dequeueBuffer_DEPRECATED = hook_dequeueBuffer_DEPRECATED;    ANativeWindow::cancelBuffer_DEPRECATED  = hook_cancelBuffer_DEPRECATED;    ANativeWindow::lockBuffer_DEPRECATED    = hook_lockBuffer_DEPRECATED;    ANativeWindow::queueBuffer_DEPRECATED   = hook_queueBuffer_DEPRECATED;}

一目了然,Initialize the ANativeWindow function pointers. 初始化函数指针。

比如我们程序中如果调用ANativeWindow::query函数,即会调用实现具体功能的Surface::hook_query.

 

? dispatch*的函数

dispatch函数有46个,前面我们有讲到perform函数对应的各种操作,都是会走到对应的dispatch函数中。

我们通过一个例子来说明下具体流程:Android 12(S) 图形显示系统 - 示例应用(二)

之前的demo中 ,比如有用到

    // 3. set the ANativeWindow format    err = native_window_set_buffers_format(nativeWindow, PIXEL_FORMAT_RGBX_8888);

看!native_window_set_buffers_format的定义

static inline int native_window_set_buffers_format(        struct ANativeWindow* window,        int format){    return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_FORMAT, format);}

其中继续调用 window->perform(),这个函数对应到了Surface::hook_perform

int Surface::hook_perform(ANativeWindow* window, int operation, ...) {    va_list args;    va_start(args, operation);    Surface* c = getSelf(window); // 类型转换    int result;    // Don't acquire shared ownership of the interceptor mutex if we're going to    // do interceptor registration, as otherwise we'll deadlock on acquiring    // exclusive ownership.    if (!isInterceptorRegistrationOp(operation)) {        std::shared_lock<std::shared_mutex> lock(c->mInterceptorMutex);        if (c->mPerformInterceptor != nullptr) {            result = c->mPerformInterceptor(window, Surface::performInternal,                                            c->mPerformInterceptorData, operation, args);            va_end(args);            return result;        }    }    result = c->perform(operation, args);    va_end(args);    return result;}

接着看! 调用c->perform(),流程到了Surface::perform

int Surface::perform(int operation, va_list args){    int res = NO_ERROR;    switch (operation) {        ......         case NATIVE_WINDOW_SET_BUFFERS_FORMAT:        res = dispatchSetBuffersFormat(args);        break;        ......       }    }

switch语句中判断是哪种case(哪中操作),调用对应的dispatchXXX,在我们的例子中即调用dispatchSetBuffersFormat

int Surface::dispatchSetBuffersFormat(va_list args) {    PixelFormat format = va_arg(args, PixelFormat);    return setBuffersFormat(format);}

私有方法Surface::setBuffersFormat 中来完成最终的工作。

通过上面这个例子应该就理清了 perform <--> dispatchXXX 的处理流程了

 

? 其它的函数和私有成员

Surface中还有很多函数和数据成员,它们提供了操作surface的接口或用于存surface的属性信息。

比如 宽、高、像素格式等属性信息

    BufferSlot mSlots[NUM_BUFFER_SLOTS];    uint32_t mReqWidth;    uint32_t mReqHeight;    PixelFormat mReqFormat;    uint64_t mReqUsage;

我们在此就不展开介绍了,后续讲解中如有遇到会再解释。

 


简单小结下:ANativeWindow中定义很多函数指针成员变量,Surface继承自ANativeWindow,当然那些函数指针成员变量也是属于Surface了,Surface实现了各种功能函数,并且让ANativeWindow中函数指针成员变量与实际功能函数建立关联(hook)

window.h中有很多static函数,使用这些函数时就可以透过ANativeWindow呼叫到Surface中的功能了

绕啊绕,绕啊绕,为啥要这样绕....


 

SurfaceControl


SurfaceControl 顾名思义是用于控制surface的一个类。他是如何进行控制的呢?且让我们慢慢看....

还记得我们例子中如何创建surface的吗?可以回头再看看 Android 12(S) 图形显示系统 - 示例应用(二)

使用SurfaceComposerClient::createSurface 获得了SurfaceControl对象,神奇吧!

    sp<SurfaceControl> surfaceControl = surfaceComposerClient->createSurface(mName, resolution.getWidth(),                                                                              resolution.getHeight(), PIXEL_FORMAT_RGBA_8888,                                                                             ISurfaceComposerClient::eFXSurfaceBufferState,                                                                             /*parent*/ nullptr);

深入其中,一探究竟,createSurface做了什么神奇操作呢?

sp<SurfaceControl> SurfaceComposerClient::createSurface(const String8& name, uint32_t w, uint32_t h,                                                        PixelFormat format, uint32_t flags,                                                        const sp<IBinder>& parentHandle,                                                        LayerMetadata metadata,                                                        uint32_t* outTransformHint) {    sp<SurfaceControl> s;    createSurfaceChecked(name, w, h, format, &s, flags, parentHandle, std::move(metadata),                         outTransformHint);    return s;}

继续去调用 createSurfaceChecked

status_t SurfaceComposerClient::createSurfaceChecked(const String8& name, uint32_t w, uint32_t h,                                                     PixelFormat format,                                                     sp<SurfaceControl>* outSurface, uint32_t flags,                                                     const sp<IBinder>& parentHandle,                                                     LayerMetadata metadata,                                                     uint32_t* outTransformHint) {    sp<SurfaceControl> sur;    status_t err = mStatus;    if (mStatus == NO_ERROR) {        sp<IBinder> handle;        sp<IGraphicBufferProducer> gbp;        uint32_t transformHint = 0;        int32_t id = -1;        err = mClient->createSurface(name, w, h, format, flags, parentHandle, std::move(metadata),                                     &handle, &gbp, &id, &transformHint);        if (outTransformHint) {            *outTransformHint = transformHint;        }        ALOGE_IF(err, "SurfaceComposerClient::createSurface error %s", strerror(-err));        if (err == NO_ERROR) {            *outSurface =                    new SurfaceControl(this, handle, gbp, id, w, h, format, transformHint, flags);        }    }    return err;}

真相已浮现,看到 new SurfaceControl 了

在前面文章 

Android 12(S) 图形显示系统 - createSurface的流程(五)Android 12(S) 图形显示系统 - BufferQueue/BLASTBufferQueue之初识(六)

我们详细分析过createSurface的流程,还有SurfaceControl中的信息,我们再贴一下信息:

源码位置: /frameworks/native/libs/gui/include/gui/SurfaceControl.h

class SurfaceControl : public RefBase    ...private:    sp<SurfaceComposerClient>   mClient;                 // 应用创建的SurfaceComposerClient对象指针,里面封装了和SurfaceFlinger通信的Binder客户端    sp<IBinder>                 mHandle;                 // 应用中显式创建的layer handle,这是个BufferStateLayer 它作为parent    sp<IGraphicBufferProducer>  mGraphicBufferProducer;  // 这个貌似没有实际用了?    mutable Mutex               mLock;    mutable sp<Surface>         mSurfaceData;            //     mutable sp<BLASTBufferQueue> mBbq;                   // BLASTBufferQueue对象实例    mutable sp<SurfaceControl> mBbqChild;                // child layer,它会和mBbq相关联    int32_t mLayerId;                                    // layer id    uint32_t mTransformHint;                             // 方向    uint32_t mWidth;                                     // surface 宽    uint32_t mHeight;                                    // surface 高    PixelFormat mFormat;    uint32_t mCreateFlags;                               // createSurface的标志信息};

 

SurfaceControl中持有Surface:mSurfaceData, 持有BufferQueue:mBbq 这就是控制的基础

总结一张图

 

3 小结

ANativeWindow/Surface/SurfaceControl的基本就介绍这些了,主要是了解这些类内有什么内容,可以使用他们做些什么操作,以及他们与其它图形组件的关系。

 


必读:

Android 12(S) 图形显示系统 - 开篇

 


 

 

 

posted @ 2022-03-17 11:43 二的次方 阅读(0) 评论(0) 编辑 收藏 举报
回帖
    羽尘

    羽尘 (王者 段位)

    2335 积分 (2)粉丝 (11)源码

     

    温馨提示

    亦奇源码

    最新会员